Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 177(1): 45-57, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901547

RESUMO

In the wake of the Human Genome Project (HGP), strong expectations were set for the timeline and impact of genomics on medicine-an anticipated transformation in the diagnosis, treatment, and prevention of disease. In this Perspective, we take stock of the nascent field of genomic medicine. In what areas, if any, is genomics delivering on this promise, or is the path to success clear? Where are we falling short, and why? What have been the unanticipated developments? Overall, we argue that the optimism surrounding the transformational potential of genomics on medicine remains justified, albeit with a considerably different form and timescale than originally projected. We also argue that the field needs to pivot back to basics, as understanding the entirety of the genotype-to-phenotype equation is a likely prerequisite for delivering on the full potential of the human genome to advance the human condition.


Assuntos
Genoma Humano/genética , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Testes Genéticos , Genômica/métodos , Genômica/tendências , Projeto Genoma Humano , Humanos
2.
NPJ Genom Med ; 3: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479833

RESUMO

Circulating cell-free DNA (cfDNA) has received increasing interest as an apparent breakthrough approach in diagnostics, personalized medicine, and tumor biology. However, the structural features of cfDNA are poorly characterized. Specifically, the literature has discrepancies with regards to cfDNA size profile. We performed a blinded study of the distribution of cfDNA fragment sizes in cancer patient plasma (n = 11), by various ultra-deep-sequencing approaches and quantitative PCR (Q-PCR). Whole-genome sequencing of single-stranded DNA library preparation (SSP-S) revealed that nearly half of the total cfDNA fragment number are below 120 nucleotides, which are not readily detectable by standard double-stranded DNA library preparation (DSP) protocols. Fractional size distribution of cancer patient circulating DNA was very similar using both SSP-S-based or Q-PCR-based methods also revealing that high molecular weight (over 350 bp) cfDNA is a minor component (~2%). These extra small detected cfDNA fragments may mostly result from nicks occurring in blood circulation in one or both DNA strands, which are subsequently revealed through the denaturation step of the SSP and Q-PCR procedures. Detailed analysis of the data suggested that most of the detectable cfDNA in blood has a nucleosome footprint (∼10-bp periodicity repeats). The nucleosome is thus the most stabilizing structure of DNA in the circulation. cfDNA molecules, which are initially packed in chromatin, are released from cells and are then dynamically degraded in blood both within and between nucleosomes or transcription factor-associated subcomplexes. While this study provides new insights into cfDNA size profiles harmonizing sequencing and Q-PCR findings, our data validate the use of a specific Q-PCR method and SSP-S for obtaining an optimal qualitative and quantitative analytical signal.

3.
Cell ; 164(1-2): 57-68, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771485

RESUMO

Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible.


Assuntos
DNA/química , Nucleossomos/química , Especificidade de Órgãos , Fator de Ligação a CCCTC , Linhagem Celular , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Pegada de DNA , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA
5.
Genome Med ; 7(1): 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26019723

RESUMO

BACKGROUND: Preimplantation genetic diagnosis (PGD) enables profiling of embryos for genetic disorders prior to implantation. The majority of PGD testing is restricted in the scope of variants assayed or by the availability of extended family members. While recent advances in single cell sequencing show promise, they remain limited by bias in DNA amplification and the rapid turnaround time (<36 h) required for fresh embryo transfer. Here, we describe and validate a method for inferring the inherited whole genome sequence of an embryo for preimplantation genetic diagnosis (PGD). METHODS: We combine haplotype-resolved, parental genome sequencing with rapid embryo genotyping to predict the whole genome sequence of a day-5 human embryo in a couple at risk of transmitting alpha-thalassemia. RESULTS: Inheritance was predicted at approximately 3 million paternally and/or maternally heterozygous sites with greater than 99% accuracy. Furthermore, we successfully phase and predict the transmission of an HBA1/HBA2 deletion from each parent. CONCLUSIONS: Our results suggest that preimplantation whole genome prediction may facilitate the comprehensive diagnosis of diseases with a known genetic basis in embryos.

6.
Nat Rev Genet ; 16(6): 344-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25948246

RESUMO

Human genomes are diploid and, for their complete description and interpretation, it is necessary not only to discover the variation they contain but also to arrange it onto chromosomal haplotypes. Although whole-genome sequencing is becoming increasingly routine, nearly all such individual genomes are mostly unresolved with respect to haplotype, particularly for rare alleles, which remain poorly resolved by inferential methods. Here, we review emerging technologies for experimentally resolving (that is, 'phasing') haplotypes across individual whole-genome sequences. We also discuss computational methods relevant to their implementation, metrics for assessing their accuracy and completeness, and the relevance of haplotype information to applications of genome sequencing in research and clinical medicine.


Assuntos
Genoma Humano , Haplótipos , Animais , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Análise de Sequência de DNA
7.
N Engl J Med ; 372(17): 1639-45, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25830323

RESUMO

Investigations of noninvasive prenatal screening for aneuploidy by analysis of circulating cell-free DNA (cfDNA) have shown high sensitivity and specificity in both high-risk and low-risk cohorts. However, the overall low incidence of aneuploidy limits the positive predictive value of these tests. Currently, the causes of false positive results are poorly understood. We investigated four pregnancies with discordant prenatal test results and found in two cases that maternal duplications on chromosome 18 were the likely cause of the discordant results. Modeling based on population-level copy-number variation supports the possibility that some false positive results of noninvasive prenatal screening may be attributable to large maternal copy-number variants. (Funded by the National Institutes of Health and others.).


Assuntos
Aneuploidia , Transtornos Cromossômicos/diagnóstico , Variações do Número de Cópias de DNA , DNA/sangue , Reações Falso-Positivas , Diagnóstico Pré-Natal , Adulto , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 21 , DNA/análise , Feminino , Humanos , Modelos Estatísticos , Gravidez
8.
Genome Res ; 25(1): 119-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25373147

RESUMO

Large-scale bacterial genome sequencing efforts to date have provided limited information on the most prevalent category of disease: sporadically acquired infections caused by common pathogenic bacteria. Here, we performed whole-genome sequencing and de novo assembly of 312 blood- or urine-derived isolates of extraintestinal pathogenic (ExPEC) Escherichia coli, a common agent of sepsis and community-acquired urinary tract infections, obtained during the course of routine clinical care at a single institution. We find that ExPEC E. coli are highly genomically heterogeneous, consistent with pan-genome analyses encompassing the larger species. Investigation of differential virulence factor content and antibiotic resistance phenotypes reveals markedly different profiles among lineages and among strains infecting different body sites. We use high-resolution molecular epidemiology to explore the dynamics of infections at the level of individual patients, including identification of possible person-to-person transmission. Notably, a limited number of discrete lineages caused the majority of bloodstream infections, including one subclone (ST131-H30) responsible for 28% of bacteremic E. coli infections over a 3-yr period. We additionally use a microbial genome-wide-association study (GWAS) approach to identify individual genes responsible for antibiotic resistance, successfully recovering known genes but notably not identifying any novel factors. We anticipate that in the near future, whole-genome sequencing of microorganisms associated with clinical disease will become routine. Our study reveals what kind of information can be obtained from sequencing clinical isolates on a large scale, even well-characterized organisms such as E. coli, and provides insight into how this information might be utilized in a healthcare setting.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Feminino , Biblioteca Gênica , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Filogenia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Adulto Jovem
9.
Prenat Diagn ; 33(6): 547-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553552

RESUMO

We recently demonstrated whole genome sequencing of a human fetus using only parental DNA samples and plasma from the pregnant mother. This proof-of-concept study demonstrated how samples obtained noninvasively in the first or second trimester can be analyzed to yield a highly accurate and substantially complete genetic profile of the fetus, including both inherited and de novo variation. Here, we revisit our original study from a clinical standpoint, provide an overview of the scientific approach, and describe opportunities and challenges along the path toward clinical adoption of noninvasive fetal whole genome sequencing.


Assuntos
Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Análise de Sequência de DNA/métodos , DNA/genética , Feminino , Feto/metabolismo , Genoma Humano , Humanos , Gravidez , Prática Profissional , Pesquisa Translacional Biomédica
11.
Sci Transl Med ; 4(137): 137ra76, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22674554

RESUMO

Analysis of cell-free fetal DNA in maternal plasma holds promise for the development of noninvasive prenatal genetic diagnostics. Previous studies have been restricted to detection of fetal trisomies, to specific paternally inherited mutations, or to genotyping common polymorphisms using material obtained invasively, for example, through chorionic villus sampling. Here, we combine genome sequencing of two parents, genome-wide maternal haplotyping, and deep sequencing of maternal plasma DNA to noninvasively determine the genome sequence of a human fetus at 18.5 weeks of gestation. Inheritance was predicted at 2.8 × 10(6) parental heterozygous sites with 98.1% accuracy. Furthermore, 39 of 44 de novo point mutations in the fetal genome were detected, albeit with limited specificity. Subsampling these data and analyzing a second family trio by the same approach indicate that parental haplotype blocks of ~300 kilo-base pairs combined with shallow sequencing of maternal plasma DNA is sufficient to substantially determine the inherited complement of a fetal genome. However, ultradeep sequencing of maternal plasma DNA is necessary for the practical detection of fetal de novo mutations genome-wide. Although technical and analytical challenges remain, we anticipate that noninvasive analysis of inherited variation and de novo mutations in fetal genomes will facilitate prenatal diagnosis of both recessive and dominant Mendelian disorders.


Assuntos
DNA/sangue , Feto/metabolismo , Diagnóstico Pré-Natal/métodos , DNA/genética , Feminino , Idade Gestacional , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...